Rev. 01-14-04

Embedded Streaming
Media Servers

Class #350

Mike Ficco & Brian Jupin

Embedded Systems Conference
San Francisco, 2004

Class #350 Embedded Streaming Media Servers /10



Rev. 01-14-04

Introduction

Internet based Streaming Media Servers have been around for afew years now. In genera, they provide
the ability to deliver arelative low bit rate media stream through the Internet to a client running on a PC,
workstation, or other device. Embedded Streaming Media Servers (ESMYS) are allittle bit different
animal. Their intended usage is significantly different and the entire concept is much less mature than its
Internet oriented cousin. It may even be true that the ultimate ESM S usage doesn’t exist yet and must
still be visualized in the (perhaps) distant future. What a wonderful opportunity and challenge for
embedded designers. Today they can design products to fill the immediate needs. They aso have the
opportunity to define the capabilities and operation of future generations of in-home media servers. For
the embedded systems designer, Embedded Streaming Media Servers present the frontier of sophisticated
mass-market consumer equipment. Inexpensive extremely large hard drives and the ever faling price of
memory and high-powered processors make consumer media servers economically feasible. This paper
discusses various aspects of building Embedded Streaming Media Servers. It assumes some familiarity
with embedded systems.

Internet Vs. Embedded: The Server

Internet Media Servers may generally be expected to consist of sophisticated software running on high-
powered platforms in relatively large corporate installations. They may be simultaneously accessed by
numerous programmers and be running multiple applications in addition to serving alarge number of
simultaneous media streams. To provide all this needed functiondity, they likely have robust security,
run avariety of applications, and offer monitoring, diagnostic, and debug tools and logs. They must
handle real-world Internet issues such asload balancing, denial-of-service attacks, viruses, worms, and
hackers. In effect, they operate in the worldwide Internet community and must cope with the worst that it
has to offer.

In a*“settop appliance” incarnation, an Embedded Streaming Media Server may sit in someone’ s house
and serve amovie to the bedroom, a movie to the family room, and music to the den. It could operatein a
closed environment or perhaps in a proprietary network and therefore have much less need of protection
from the evils of the Internet world community. A dightly more complex ESM S would allow the owner
to remotely communicate commands and retrieve information from the settop. However, ESMS designs
envisioned by this paper are not intended to be general purpose Internet media servers. In this paper’s
view, a settop Embedded Streaming Media Server may be much more versatile than its Internet cousin in
the way it acquires or receives mediato be streamed. The ESMS may be required to digitally record live
programming for immediate or future distribution. It isthis Digita Video Recording (DVR) functionality
combined with a program guide that dramatically distinguishes the usage of ESMS from typica Internet
sarvers. A settop appliance with DVR, a program guide, and the ability to stream media brings us ever
closer to the holy grail of “any move, any time”.

Internet Vs. Embedded: The Client

Internet Media Clients are available from a variety of manufacturers and run on severd platforms and
operating systems. As agroup, they are sophisticated programs that offer pluggable CODEC modules,
advanced user interfaces, and a standard TCP/IP connection to the Internet. Detailed discussions of
Internet media clients are beyond the scope of this paper. However, some consideration of theseis
necessary to insure an achievable and compatible feature set is defined for the ESMS. The cost and
complexity of Internet servers relegates them to industrial applications. Internet clients, however, are
aready in ubiquitous household use. It is, therefore, an honorable and achievable ESM S goal to be

Class #350 Embedded Streaming Media Servers 2/10



Rev. 01-14-04

serving amovie to an Internet client running on a PC or MAC in the den while smultaneoudly serving a
movie to an embedded client showing the movie on a TV in the family room. In this scenario, the
embedded media client may actualy be an economical settop cost optimized for this purpose. Findly,
essentialy the same embedded media client may run within the ESM S itself to present amovie on a
connected television.

Reference Feature Set: The Server

In any project, the requirements should be the first thing established. In our case this corresponds to the

feature set supported by the Embedded Streaming Media Server discussed in this paper:
The ESM S must be able to acquire and store content. This may involve the real-time (“live”) capture
of adigitally encoded transmission, digitizing and compressing of anaog programs, or some form of
background (non-real-time) acquisition. The server should be able to acquire multiple different
programs simultaneously.
The ESMS should have the ability to simultaneously serve multiple streams of digital programming
(multimedia) to network connections.
The ESMS may have the ahility to play (output) analog programming to a TV viaNTSC/PAL,
component video, s-video, etc. This output may include picture-in-picture of a different program.
The ESM S should be able to perform al media acquisition and serving functions at the same time. It
would be acceptable that the sum of the number of acquisition and serving activities be limited to a
maximum number. That is, one may choose more servings at the expense of fewer smultaneous
acquisitions.
The ESMS must be able to handle serving heterogeneous media. That is, the server must be able to
deliver both movies (video and audio) and music (audio only).
The ESMS must be able to display alist of available programs and should alow the user to navigate
the list and select a program to watch. List display and navigation may be local via a connected TV
screen or remote via a network connection to an embedded or Internet client.
The ESM S should provide the ability to delete, hide, and otherwise manage the recorded programs.
As suited to the current state of the program, the ESM S should be able to perform the normal
functions we' ve come to expect from VCRs (pause, play, fast forward, rewind, etc.).
The ESM S should have the ability to perform advanced functions only possible with hard disk based
digital recording. These may include, for example, the ability to instantly reposition to another part of
aplaying program, to toggle viewing between two programs without missing anything, dynamically
insert personalized information into a playing program, or perhaps to video edit recorded programs.
The ESM S should be able to receive and process a PlayList of programs.
The ESM S must provide point-to-point (TCP) connections to clients.
The ESMS must be capable of acting as an HTTP server to stream mediato Internet clients.
The ESMS should be capable of multicast (UDP) broadcast of media

Reference Feature Set: The Client

Following are desirable features of a client compatible with our Embedded Streaming Media Server.
Note that this feature set is applicable to both Internet and embedded media clients. Today’s Internet
media clients generally do not excel at supporting some of these features. They are more suited to rea
time delivery of relatively low bandwidth data (such as the Internet web cast of a conference). Thisis
part of the joy of helping to define the capabilities of future product generations and offers manufacturers
the opportunity of distinguishing themselves with a custom client:

The client should be able to initiate an HT TP stream from a specified URL.

The client must be able to achieve audio/video synchronization from possibly widely skewed media.

Class #350 Embedded Streaming Media Servers 3/10



Rev. 01-14-04

The client should be able to tolerate wrapping of the media timestamps

The client should be able to tolerate gaps in the transmission of the audio and/or video and should be
capable of promptly achieving audio/video synchronization after such gaps.

The client must be able to display alist of previoudy recorded media

The client must be able to display a program guide of currently broadcast media

The client must be able to pause the display of the media

The client should be able to fast forward and rewind the streaming media.

The client should be able to handle PlayList of programs to enable hours of preprogrammed viewing.

Embedded Platform Architecture

Overview

This paper focuses on the embedded components and modules involved in building a settop appliance
Embedded Streaming Media Server. Such a settop appliance is assumed to operate in adigital TV
network. Hence, it is assumed that such critical modules as the power supply, tuners, program guide,
front pandl, infrared receiver, etc. smply exist and work. Obvioudy agreat deal of variation is possible
in the design and implementation of these modules. We assume that such variation is constrained to
remain compatible with the goa of acquiring and streaming mediato clientsin atypical household.

Major Modules

The emphasis of this paper is the streaming distribution of media. As such, it is not concerned with
modules controlling generic operation (such as managing the front panel) and only minimally concerned
with modules involved in the acquisition of media. It is sufficient to note that the acquisition of mediais
by design and intent segregated from the serving. That is, streaming or playing the media has no effect on
any planned or in progress acquisition other than the necessity of sharing system resources such as
memory, processor cycles, and hard drive throughput. It is expected that acquisition of media will
continue without material interruption while various clients start and stop presentation of media streams.

Acquisition(s) Conversion(s) Server(s) Client(s)
Disk

Figure 1. Embedded Streaming Media Server Major Modules

Acquisition

The Acquisition modules are the source of al multimedia data received and stored by the Embedded
Streaming Media Server. Multiple acquisitions can be in progress at the sametime. Some may be live
and real-time while others may be trickling in at avery dow rate or blasting in much faster than real-time.
While details are beyond the scope of this paper, it is reasonable that a distinct Acquisition module be
associated with each type and source of data. Each Acquisition module would uniquely understand details
of the input being received. For example, one type of Acquisition module may understand a MPEG

Class #350 Embedded Streaming Media Servers 4/10



Rev. 01-14-04

Transport Stream sent to cable or satellite settop boxes. Transport Streams are generaly designed to be
able to tolerate some amount of data loss in transmission and an associated Acquisition module would
understand the details and consequences of such atransmission. Other inputs may expect or insure full
data integrity. In acomplex service network, awide variety of Acquisition modules may exist to handle
an assortment of compression, encoding, or encryption schemes. The intent of all Acquisition modulesis
to remove any proprietary formatting, encoding, or encryption and record &l received mediain a common
(i.e. native to this settop design) format. This operation may involve significant processing or
reformatting but once completed al multimedia data is stored in a common format. Note that this does
not mean that all the recorded datais of the sametype. The ESMS is designed to support the acquisition,
storage, and streaming of heterogeneous multimedia data. The same server may store and serve PCM
audio, MP3 audio, MPEG 2 video, and proprietary compression and encoding schemes. Eachfileis
tagged with sufficient metadata to allow a Format Conversion output module to rearrange the content as
necessary to be compatible with the destination client. The metadata could also contain other program
related information such as the title, plot summary, time of recording, etc.

It is worth noting that the actual media record operation could be segregated from acquisition. An elegant
Acquisition design could simply tag the “common format” data with the associated destination file and
place it on a Record Queue service by ageneric Record Thread. A high-end system may have more than
one hard drive, but it is reasonable that there is a single Record Queue and associated Record Thread for
each hard drive in the settop. Thisis because a physical hard drive can only be reading or writing asingle
location at any given time. Hence, al accesses of a hard drive must be synchronized. Synchronizing
reads and writes must be done with a protective mutex, but using a single write thread for each hard drive
naturally forces sequentia processing of queued hard drive write requests and automatically resultsin
serialized disk access. Actua writing to the hard drive is best accomplished using Direct Memory Access
(DMA). DMA speeds the transfer and relieves the processor from the labor of being directly involved in
moving the data.

Storage

Today the storage module of a consumer priced Embedded Streaming Media Server will typicaly be a
large capacity economical hard drive. Although the focus of this paper is on serving the stored media, it
isworth noting that a great variety of information and data will likely be stored on the drive in addition to
the media. Adding a hard drive to a settop not only adds the cost of the hard drive itself, but also likely
increases the cost of severa other components of the product. To accommodate the hard drive, the box
must become higger, the power supply must become heftier, and additional heat will be generated. Cost
conscious engineers will be looking to use the hard drive as much as possible to replace storage
previously needed in the basic settop design. Certainly it is reasonable to expect the hard drive to hold the
executable code, debug and log files, program guide information, and perhapsto replace large RAM
buffersin the transmission and reception of commands and data on aLAN or modem connection.

Itis, therefore, likely that the ESMS hard drive will have at least two partitions and perhaps two
completely different file systems. It is probably best that the partition that holds the executable program
and log files be the standard file system provided by the operating system of choice. The multimedia
partition, however, may benefit greatly from a custom file system. Desirable attributes of this custom
multimedia file system include:
The file system must allow multiple open instances of each file. Certainly severa clients could be
receiving the same file (but perhaps each from a different position in the file). In the case of viewing
alive program, the file would be open for both reading and writing. The maximum number of open
read instances is a fundamenta design issue and depends on the processing power and other resources

Class #350 Embedded Streaming Media Servers 5/10



Rev. 01-14-04

of the platform. For the ESMS application, it is reasonable that only a single record instance be
alowed for each file.

The file system must support heterogeneous data storage. That is, the file system must be able to
store audio only and audio/video programs. It is also reasonable that the file system not restrict the
types of compression and encoding used by the media

The file system should store programs using large contiguous disk blocks. By far the greatest delay
in accessing a hard drive is moving the drive head to the correct position. Efficient use of the hard
disk requires that data be read in large contiguous blocks to minimize head motion. The optimum
size of the block depends on many factors and should be carefully analyzed early in the devel opment
cycle.

The file system must support very largefiles. A single long movie (say three hours) recorded at 10
megabits per second may require up to 14 gigabytes of disk space. Depending upon the intended
market of the product, the files system may reasonably be expected to handle individual files of
perhaps 64 gigabytes.

The file system must support deletion of files in afashion that minimizes or eliminates disk
fragmentation.

The file system should support efficient video editing by alowing removal and insertion of file
sections without forcing the potentially huge amount of datain the file to be copied to a new file.
The file system should support hiding files and protecting files from unauthorized deletion.

The actual format in which the multimedia data is stored is another fundamental platform design decision.
Some current MPEG based digital recorder designs use essentialy the original MPEG Transport Streams,
some use formats roughly approximating MPEG Packetized Elementary Streams, and some use highly
proprietary configurations. Each approach has advantages and disadvantages that must be considered
early in the platform design. Furthermore, initial requirements must state whether the media stored on the
hard drive must be encrypted. If encrypted, additiona hardware or processing power is needed to encrypt
and decrypt. A determination must be made as to whether encryption must be real-time and whether the
server or the client itself will perform decryption. Finally, the designers must decide how to generate
encryption/decryption keys and how to store and distribute them. The earlier these decisions are made in
the design process the better since retrofitting encryption, decryption, and key distribution into an existing
design can be very difficult.

Format Conversion

It is reasonable that a Format Conversion task or thread be assigned to each server connection. Format
conversion should be viewed as the method that builds the media stream into a format understood by the
destination client. Format conversion should be distinguished from the transmission protocol (such as
HTTP). The transmission protocal is handled by a Server thread itself. Examples of format conversion
include decrypting the data, transcoding MPEG 2 into MPEG 4, and converting a stored MPEG
Packetized Elementary Sream (PES) into an MPEG Program Stream. Each distinct conversion or
decryption would be handled by a Format Conversion task. Format Conversion threads of that task
would be multiple instances of the same task preparing distinct streams for various clients expecting the
same data structure. The ultimate goa of each Format Conversion task or thread is to put media stream
packets on a transmission queue handled by the Server thread in communication with the destination
client. In effect, a Format Conversion module makes the correct data available and aServer module
sends it using the protocol specified by the client. Of course, the more complex the Format Conversions
to be done and the more Format Conversions 10 be smultaneoudly supported, the greater the need for
power and resources in the settop box. The good news is that modern economical processors are
powerful enough to feed a couple of clients with nominally converted data streams.

Class #350 Embedded Streaming Media Servers 6/10



Rev. 01-14-04

A Format Conversion task may aso be an appropriate place to perform Dynamic Program Assembly
(DPA). Dynamic Program Assembly is the process of building a program in real-time from multiple live
and/or stored segments. An example of thisisthe local insertion of highly focused and customized
advertisements into a real-time broadcast. Here, generic (place-holder) advertisements in the broadcast
are mapped out and replaced by advertisements determined to be of specid interest to the owner of the
settop. The replacement advertisement could have been received earlier and previously stored on the hard
drive or they could be arriving live on an aternate multiplexed transmission stream. Regardless, this
dynamically assembled (and perhaps totally unique) media stream is then sent to the associated
unsuspecting and indifferent client.

Server

The Server is the system component responsible for delivering a media stream to a client. Each active
client is associated with a specific Server instance. There are three basic components of each Server
instance:

The Transmission Queue

The Transmission Queue is fed by a Format Conversion task or thread and is handled by a Server thread.
This queue provides the media stream input to the Server. It is expected that the queue provides correctly
formatted datain the correct sequence TheServer’sjob isto send this data using the Client specified
protocol.

The Protocol Engine

It is the Protocol Engine that maintains the connection with the Client. The connection may be point-to-
point or multicast and it may be “push” or “pull”. Ina*“pull” connection the Client requests each new
block of data. An example of this could be some type media player (the Client) connected by HTTP to
the Server. The media stream itself tellsthe Client how fast to consume the data. Asthe mediadata is
consumed, buffer space is freed and the Client requests additional data. 1n a*“push” connection, the
Server throttles the data stream and sends each new block of data at the appropriate time and rate. The
Client does relatively little buffering and consumes the data at essentially the samerate it arrives. An
example of thiswould be a media player that joined a multicast transmission. The Server determines the
rate at which the multicast issent. All listening Clients must do their best to keep up.

Examples of a Protocol Engine include HTTP, RTP, and of course alarge number of proprietary
implementations.

The Communications Pipe

The Communications Pipe connects the Server to the client. This connection can be virtua via standard
telecommuni cations protocols such as TCP or UDP, or could be aphysical connection across a USB
cable, hardware bus, or with acustom ASIC. The important point is that thisis only one more link in the
chain that connects data stored on the hard disk to the Client.

Client

There may be multiple Clientinstances as well as many diverse types of clients. A Client may be
“embedded” running in the same box as the server or in a settop box in another room. A client may aso
be running on a PC, MAC, PDA, etc. in another room somewhere nearby. For the purposes of our
Embedded Streaming Media Server, Clients running remotely (i.e. through the Internet) have reduced
capabilities and will not be able to receive al forms of media available to the local Client. Essentidly, a

Class #350 Embedded Streaming Media Servers 7/10



Rev. 01-14-04

Client may be any device or interface capable of displaying the stored media. The basic components of a
client include:

A User Interface

The appearance and capabilities of the user interface are highly dependent on the platform on which the
Clientruns. Examples may be smple VCR style icons or modest menus. At the other extreme may be
sophisticated interfaces with changeable “skins’. The important issue is that the system as awhole and
specifically the connected Format Conversion module properly interact with the commands issued by the
user interface. It isworth noting that PlayLists are aform of user interface. A PlayList may do much
more than specify a sequence of programsto play. A properly designed PlayList implementation alows
looping on amovie or playing segments of amovie out of order. A PlayList may even be used to
dynamically insert into the media stream advertisements specificaly targeting the owner of the Client.

A CODEC

The CODEC consumes the multimedia data and presents audio and video to the user. This paper is not
particularly concerned with details of the CODEC. It is sufficient that it is compatible with the output of
the Format Conversion module connected to this Client. Compatibility requires the basic need to
understand the media encoding and the ability to achieve audio/video synchronization under al
characteristics and variations of the media stream. It would also be desirable that the CODEC support
specia features needed by various play modes (pause, fast forward, rewind, etc.). In the case of Server
pushed data, the CODEC must be able to keep up with the arriving stream.

A Display Device

The Display Device may be alarge screen high definition TV, the tiny screen of a cell phone, or anything
in-between. Inall cases, the CODEC, the User Interface, and the Format Conversion module associated
with this Client must dl agree on the capabilities of the display.

System Issues

A typical application of the Embedded Streaming Media Server described in this paper might be
recording a movie, smultaneously presenting it rea-time to an attached TV, and aso presenting a
previously recorded movie remotely on another TV. One would expect that viewers of both televisions
be able to independently pause or rewind their presentation. At the most fundamental level, the ESMSis
unavoidably a multi-output device. Moreover, each output must be distinct and autonomous. It could
literally be true that the same movie is being watched in the family room and bedroom. However, the
instance being viewed in the bedroom may lag that of the family room by one second - or by one hour.
There is no need to “aggregate” viewers into watching a single stream. There is no need for one viewer to
see a frozen image when the other pauses the program. A well designed relatively economicd platform is
certainly capable of streaming two or three or more independent programs throughout a home or
gpartment complex.

Task Priorities and Resource Allocation

A good ESMS system design allocates sufficient buffering, processor horsepower, disk bandwidth, etc. so
no stream ever starves of data or processing. The challenge of an embedded system designer isto
minimize the system cost while maintaining adequate data processing capabilities. There are no specia
challenges associated with establishing the task priorities for an Embedded Streaming Media Server. Itis
just an embedded system. It is reasonable that Acquisition modules responsible for capturing rea-time
datarun at ahigh priority. It isasoreasonable that a user interface run at arelatively low priority.
Format Conversion and Client modules should receive a medium priority. Early in the design process a

Class #350 Embedded Streaming Media Servers 8/10



Rev. 01-14-04

decision should be made with respect to guaranteeing the availability of sufficient system resources to
assure that anew Client can be fully serviced. Guaranteeing that sufficient worst case resources are
available can be pessimistic for a consumer priced device. Denying anew Clientthat could be well
served under typical circumstances may be unacceptably pessmistic and costly for a consumer product.
A more appropriate consumer product model may be that of graceful degradation where responsiveness
sows when system resources get tight. Setting the criteria of acceptable degradation is a difficult
responsibility since it may present a very strong image of quality. Some careful system analysis and
consideration of your corporate image is involved in setting this quality level.

State Management

There are quite alarge number of operationa statesin an Embedded Streaming Media Server. Tracking
the progress of each streaming instance, for example, involves knowing the next disk block, the last disk
block in the file (so we know when we are done), whether we are playing or paused, the ID of the stream
destination, etc. Using global variables for this tracking seems inappropriate since the information may
be different for each active instance. It isbest if an instance of state management variables is allocated to
each active module. Thisimplies that each task or thread of atask must alocated and initialize a good
sized block of tracking variables. In addition, methods of accessing this information must be created to
support the need for some of this information by other system components. The good newsis that al this
information is being created and accessed at video speeds. Ah!! Y ou wanted challenges like this when
you decided to become an engineer.

Component Qualification

Occasionally agreat dedl of effort is exerted to qualify afew components determined to be possible
bottlenecks. The performance of the hard disk, for example, is certainly critical to the overall operation of
the product. It seems very reasonable to develop a comprehensive disk drive stress test to insure it has
adequate performance. However, some moderation and restraint in this area may be beneficial. All
components must be reliable and tests must be run to validate that they are. 1t may be questionable
whether accurate performance stress tests can be developed for some of the components. Certainly tests
can be developed that show differences between different model hard drives. 1t may be difficult to prove
that these differences are relevant to the highly statistically variant environment of an Embedded
Streaming Media Server. It may be more difficult to justify paying significantly more for this dubious
performance gain. To use an anaogy, the ESMSislike afootball team. The hard driveis like the
quarterback. Having agreat quarterback iswonderful, but it is more important to have a great teeam. The
best disk drive can be ruined if surrounded by a bad design. A great defense and a good running game
can get alot of mileage out of an economical quarterback. Make sure the system designis sound. A
great design should be able to work with any (reliable) hard drive.

Error Conditions

Thisis not your grandmother’ s television. A staggering number of error conditions are possible. The
disk may be full when an Acquisition module triesto run. The user in the bedroom may try to delete a
program being watched by someone in the family room. The PC receiving the stream of music was just
turned off. The owner just unplugged the box before leaving for the beach. Billy accidentally deleted a
half hour of his favorite movie while editing commercials. Jane wants to watch TV but forgot her
parental control password. Etcetera, Etcetera, Etcetera...

An Embedded Streaming Media Server is avery complex device being operated by untrained personnel
in the most hostile environment imaginable - the home. Children, adults, the family pet, and even your

Class #350 Embedded Streaming Media Servers 910



Rev. 01-14-04

brother-in-law will tamper with this device. Early design consideration must be given to detecting and
gracefully respond to al error conditions. Where will error logs be stored and how will they be retrieved?
What actions are legal under what conditions and what must be prevented at all costs? Will it be possible
to fix bugs with software downloads? Will a maintenance staff be kept on the project to produce needed
downloads in the future? Who will look at retrieved error logs?

Conclusions

In the near future settop box manufactures will provide consumer priced digital recording boxes capable
of receiving, storing, and serving media streams to multiple household clients. Skilled embedded
engineers have aready designed products that receive hundreds of channels and simultaneously record
severd of them. Soon, economical consumer products will be capable of much more. The recorded
content will be streamed to multiple and varied clients around the house. It is likely that an entire
industry of third party providers will evolve to help consumers aggregate, edit, and customize their media
treasures. A few terabytes of storage will accommodate thousands of movies and songs, instructional and
educationa videos, faded childhood pictures and camcorder memories. All of thiswill be available on
TV sets, stereos, laptops, PDAS, and maybe even cell phones. It isthe skill and vision of embedded
engineers that will enable these revolutionary consumer products. The pioneers will define standards,
features, and operational paradigms for an entire generation of products. Soon, boredom will be athing
of the past. Something interesting and entertaining will be instantly available from any number of devices
scattered around your house.

Class #350 Embedded Streaming Media Servers 10/10



